Error, power, and cluster separation rates of pairwise multiple testing procedures.

نویسندگان

  • Juliet Popper Shaffer
  • Rhonda K Kowalchuk
  • H J Keselman
چکیده

In comparing multiple treatments, 2 error rates that have been studied extensively are the familywise and false discovery rates. Different methods are used to control each of these rates. Yet, it is rare to find studies that compare the same methods on both of these rates, and also on the per-family error rate, the expected number of false rejections. Although the per-family error rate and the familywise error rate are similar in most applications when the latter is controlled at a conventional low level (e.g., .05), the 2 measures can diverge considerably with methods that control the false discovery rate at that same level. Furthermore, we shall consider both rejections of true hypotheses (Type I errors) and rejections of false hypotheses where the observed outcomes are in the incorrect direction (Type III errors). We point out that power estimates based on the number of correct rejections do not consider the pattern of those rejections, which is important in interpreting the total outcome. The present study introduces measures of interpretability based on the pattern of separation of treatments into nonoverlapping sets and compares methods on these measures. In general, range-based (configural) methods are more likely to obtain interpretable patterns based on treatment separation than individual p-value-based measures. Recommendations for practice based on these results are given in the article. Although the article is complex, these recommendations can be understood without the necessity for detailed perusal of the supporting material.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Family wise separation rates for multiple testing

Starting from a parallel between some minimax adaptive tests of a single null hypothesis, based on aggregation approaches, and some tests of multiple hypotheses, we propose a new second kind error-related evaluation criterion, as the core of an emergent minimax theory for multiple tests. Aggregation-based tests, proposed for instance by [1], [2], or [6], are justified through their first kind e...

متن کامل

Evaluating the Operating Characteristics of a Class of Closed Multiple Comparisons Procedures: A General Framework

Analytic formulas are developed for various types of power and error rates of some closed testing procedures. The formulas involve non-convex regions that may be integrated with high, pre-specified accuracy using available software. The non-convex regions are represented as a union of hyper-rectangles. These regions are transformed to the unit hypercube, then summed, to create an expression for...

متن کامل

Comparing two testing procedures in unbalanced two-way ANOVA models under heteroscedasticity‎: Approximate degree of freedom and parametric bootstrap approach

‎The classic F-test is usually used for testing the effects of factors in homoscedastic two-way ANOVA models‎. ‎However‎, ‎the assumption of equal cell variances is usually violated in practice‎. ‎In recent years‎, ‎several test procedures have been proposed for testing the effects of factors‎. ‎In this paper‎, ‎the two methods that are approximate degree of freedom (ADF) and parametric bootstr...

متن کامل

Multiple comparisons: comparisonwise versus experimentwise Type I error rates and their relationship to power.

Some statisticians contend that the experimentwise Type I error rate is the most important attribute of multiple comparison procedures to be used for making all possible pairwise comparisons among treatment means after an analysis of variance. That contention is challenged here. The importance of Type I errors is discussed as well as the occurrence of Type I errors in biological experiments. Al...

متن کامل

Kernel machine SNP-set testing under multiple candidate kernels.

Joint testing for the cumulative effect of multiple single-nucleotide polymorphisms grouped on the basis of prior biological knowledge has become a popular and powerful strategy for the analysis of large-scale genetic association studies. The kernel machine (KM)-testing framework is a useful approach that has been proposed for testing associations between multiple genetic variants and many diff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Psychological methods

دوره 18 3  شماره 

صفحات  -

تاریخ انتشار 2013